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1. Introduction on WFIRST CGl
2. CGI Spectroscopy Mode Improvements (SPLC)
3. CGI Disk Imaging Mode Improvements (SPLC)

4. APLC Investigations



@ o1 pronuion aporatory CGI Coronagraph Design

* Maximize science yield.
* Minimize risk.

/ Design Parameters \

Performance Metrics

Goals:

* Contrast

* Throughput Sensitivities to:
* Spectral Bandwidth * Pointing jitter
* Field of View (IWA, OWA, angle) .

Wavefront jitter (coma, astig, focus)
* Primary mirror polarization aberrations
* Mask misalignment
Mask Properties )
* Mask shapes
* Mask materials

o /

Most of the design work in
past year has been to
address sensitivities to
aberrations & misalignments.
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Nominal core throughput (within FWHM)
34%

Coronagraphic core throughput:
» Open pupil: ~18-24%

» Annular pupil: ~10-15%

» WEFIRST pupil:  ~4-6%




Qurmumia Types of WFIRST CGI Modes

WFIRST pupil Nominal PSF
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Notional dark hole regions:

Three types of modes to achieve science goals:

1. Hybrid Lyot Coronagraph (HLC): exoplanet & inner disk imaging
* 10% BW, 360° FOV, ~3-9 A,/D
e ~4.5% core throughput

Trauger et al. JATIS 2016

2. Shaped Pupil Coronagraph (SPC) for IFS: exoplanet spectroscopy
* 18% BW, 2x65° FOV, ~3-9 A,/D
* ~3.9% core throughput

3. Shaped Pupil Coronagraph (SPC): outer disk imaging
* 10% BW, 360° FOV, ~6.5-20 )\O/D
* 6.0% core throughput «  Zimmerman, Riggs, et al. JATIS 2016

Riggs SPIE 2014
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1. Introduction

2. CGl Spectroscopy Mode Improvements (SPLC)
a) New Lyot stop shape
b) Better low-order aberration sensitivities
c) Integrated design pipeline

3. CGI Disk Imaging Mode Improvements (SPLC)

4. APLC Investigations



Qurmueann SPC-IFS Design (2015-2016)

On-Axis Lyot Plane Intensity (Log Scale)
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3.6% throughput
- 3.0% throughput in 2017 from PM rollover

Off-Axis PSF at FPM (Linear Scale)
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@ uommniry SPC-IFS Design (July 2017)

On-Axis Lyot Plane Intensity (Log Scale)

2 x 10° raw contrast

On-Axis PSF at FPM 25 On-Axis PSF at Detector (Log Scale)
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e Better raw contrast
e Better throughput

Off-Axis Lyot Plane Intensity (Linear Scale) ‘assssEsssEEEEEEEEEEEEEEEEES
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@ srrnssion aberaer Tip/Tilt Jitter Robustness

} Not optimized for tip/tilt
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} Optimized for tip:

Raw Contrast

* Must optimize for tip/tilt insensitivity, or else contrast degrades too much

» Tradeoff: T/T insensitivity vs throughput



@ urmueen \Wavefront Jitter Robustness

Contrast Degradation from 100 picometers RMS Zernike Aberrations

2016 Design (Annular LS) July 2017 Design (Bowtie LS+T/T Opt.)
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» New design is several times less sensitive to most low-order aberrations
» More robust to polarization aberrations
» More robust to wavefront jitter
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@iy SPC-IFS Design Pipeline

2) Rapid Optical Simulator (MATLAB)

1) SPLC-IFS Optimization Code (
r ~ Simulate effects of:

~N

1) Tip/tilt: jitter and stellar diameter

Grid search over — .. )
2) Polarization aberrations

design parameters.
qnpe 3) [Soon] Monte Carlo aberrations &

Masks o
\_ ) \ misalignments )
A
Performance Data:
* raw contrast
Optimization code modifications * throughput
* core area
4) Human Review 3) RV Planet Exposure Time Calculator (MATLAB)
( ~ Exposure times & e N\

# of spectra

* Look for statistically highest yield .
! yRIREY _ [Soon] Vary assumptions on planet

designs.
* Adjust strategy to get more spectra. albedo & detector properties.

. J . J
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@ urriseniaen SPC-|FS Design Pipeline: Output

Assumptions: o;/;pys= 1.5mas, D, . =1.0 mas,
(Pessimistic Case) both polarizations, <=240 hours/spectrum/bandpass
f,,=0.2
2016 Design (Annular Lyot Stop): 660 nm: <3 spectra
(Telescope OD not reduced) 770 nm: <1 spectra

June 2017 Design Survey (Bowtie Lyot Stop):

SPC-IFS Yield: 660nm, 1.5 mas T/T Jitter, Dy, = 1.0 mas SPC-IFS Yield: 770nm, 1.5 mas T/T Jitter, Dy = 1.0 mas,
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(¥=1WA-0.3) 660 nm: <=6 spectra

770 nm: <=3 spectra v
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1. Introduction

2. CGI Spectroscopy Mode Improvements (SPLC)
a) New Lyot stop shape
b) Better low-order aberration sensitivities
c) Integrated design pipeline

3. CGI Disk Imaging Mode Improvements (SPLC)

4. APLC Investigations
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On-Axisl 22 ~ 8e-10
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5.5% throughput
= 5.2% throughput in
2017 from PM rollover
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Lyot stop inner diameter is unnecessarily small 2 worse performance



@ urmueens SPC-Disk Design (Ju
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Lyot stop is better matched to shape of off-axis light



& srrruion ot New Cost Function

* New Lyot stop was insufficient on its own
* Also needed new cost function in optimization

e
n
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Core Throughput (%)
()

Shaped Pupil

Lyot Stop

Pinhole

New cost function: I
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—©— Maximizing filtered, post-coronagraphic peak

max E E
A
—8— Maximizing SP xLS transmission

—&— Maximizing SP transmission n | Old cost function:

<> January 2017 design (updated for PM rollover)
| | | |

25

30 35 40 45 50
Lyot Stop Inner Diameter (% Diciescope)

» New cost function now maximizes the off-axis transmission through
the whole coronagraph
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1. Introduction

2. CGl Spectroscopy Mode Improvements (SPLC)
a) New Lyot stop shape
b) Better low-order aberration sensitivities
c) Integrated design pipeline

3. CGI Disk Imaging Mode Improvements (SPLC)

4. APLC Investigations
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& sstrorion ateraery SPLC & APLC Varieties

 For all cases: 18% broadband
] C FWHM
Type  Apodizer FPM S PSFaar  PFoianet steongtnst Notes

7 \\
deroon ;,:; 3.8% * 2e-9 raw contrast
\\ /) % ¢

SPLC

* 6e-9 raw contrast
7.2% * Poor astigmatism
sensitivity at IWA

10.0% * 4e-9 r:.jw c.ontrasjc. |
* Poor t|p/t||t sensitivity

Occulting
Bowtie (15 )\o/D)Zr No
2 ..
Notes: Not to 10 to 102 Eini:\roﬁcD;Ié refllectlwty
scale Log scale 0sses
SPLC: ?2?2? APLC-OBT:
* G@Great sensitivities to « Adequate * Poor sensitivities to
low-order aberrations # sensitivities h low-order aberrations
& misalignment e Medium & misalignment
* Low throughput throughput * High throughput ;
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1. CGI Spectroscopy Mode Improvements (SPLC)
a) New Lyot stop shape
- Higher throughput & higher contrast
b) Better low-order aberration sensitivities
—> Higher contrast
c) Integrated design pipeline
—> Higher science yield

2. CGI Disk Imaging Mode Improvements (SPLC)
* New cost function + New Lyot stop
- Higher throughput

3.aric ovs sec [

* Investigating tradeoff:
throughput vs aberration insensitivities

19
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Lyot Plane Intensity Stellar PSF
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* APLCs let ~1 million times more light past Lyot stop
» Higher sensitivities to low-order aberrations and Lyot stop misalignments
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CGlIl Coronagraph Design

Goals:

Maximize science yield.
Minimize risk.

-

Sensitivities to:
* Pointing jitter

* Wavefront jitter (coma, astig, focus)

Design Parameters

Performance Metrics
* Contrast

*  Throughput

* Spectral Bandwidth

* Field of View (IWA, OWA, angle)

Primary mirror polarization aberrations
Mask misalignment

Mask Properties

* Mask shapes

\ I e  Mask materials

~

/

| l

Most of the design work in Coronagraph Optimizer
past 1-2 years has been to
address sensitivities to lMasks
aberrations & misalignments.
Instrument Simulator
lThroughput, raw contrast

Science Yield Calculator ]

22



@zt The WFIRST Coronagraphs

s, : —

: Shaped Pupil Lyot . PSF

i Coronagraph ' ' ; R
(SPC):

Zimmerman et al. 2016

- .
----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------
*

: Hybrid Lyot Complex FPM

: Coronagraph ﬂ ®

(HLC):
: Trauger et al. 2016 Phase Amplitude

Stellar
PSF

&

* 0
----------------------------------------------------------------------------------------------------------------------------

fBenefits of Each Coronagraph:

e HLC: Full FOV, fewer masks, easier alignment

* SPC: Broader bandwidth, lower ab. sensitivities (esp. PM pol.), lower risk with DMs

\_




@ urmrssminemey SPC-|FS Design Pipeline
1) SPLC-IFS Optimization Code 2) Rapid Optical Simulator (MATLAB)

{ \ / Simulate effects of: \

Grid search over

design parameters. 1) Tip/tilt: jitter and stellar diameter
Python wrapper Masks 2) Polarization aberrations (Phase A model).
AMPL base code : from each 3) [Soon] Monte Carlo the Fresnel model:

\ ..................................................... / design e
1) Mask misalignments
4 \ 2) PSD aberration maps for each optic/

Tables: Raw contrast,
Optimization code modifications throughput, core area

4) Human Review 3) Nemati’s RV Planet Exposure Time Calculator (MATLAB)
4 ) 4 N

- Look for statistically highest yield .
ook for statistically highest yie C— Vary assumptions on planet albedo

designs.
* Adjust strategy to get more spectra. Exposure times & & detector properties.

# of spectra

. J \ i




@ urmueen Polarization-Induced Aberrations

» The polarization from the primary mirror is a MAJOR design constraint.

Cycle 6 Polarization: WFE, -WFE,

Really Hard Easy
Wavelength = 450 nm 550 nm 650 nm
RMS WFE =  0.013 waves 0.003 waves 0.001 waves

N

o
o
N
a

This figure was already
cleared in John Krist’s
presentation “Digging A
Dark Hole: Models” in
April 2016.

L
L
=
0
=
®
=

-0.025

750 nm 850 nm Ha 950 nm
0.004 waves 0.006 waves

Hard

Differential polarization is mostly astigmatism

* Negligible near 600nm - HLC

* Huge WFE far from 600nm - SPC, or HLC+polarizer
Huge influence on our operational modes

0.007 waves

25
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CGI Science Bands 1 and 2
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Bands 1 & 2 shifted to longer wavelength because
polarization WFE is too strong at B-band.
26
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x (km-am™)

' logia

Full-Disk Albedo

Jupiter
N i
YA\ Titan

CGI Science Bands

NOTE: No polarizers or field
stops in IFS channel.

1 1 — e
900 950 1000

700 750 800 850
CGl |A .| BW | Science Purpose Imager | Coronagraph | Can Use Polarizer [Must Use Polarizer
Bands| (nm) or IFS Type (for Science) (for Aberrations)

1 508 | 10% [continuum, Rayleigh | Imager HLC X X (HLC)

2 575 | 10% |continuum, Rayleigh | Imager HLC X

3 660 |18% |CH4 spectrum IFS SPC

4 770 | 18% |CH4 spectrum IFS SPC

5 890 | 18% |CH4 spectrum IFS SPC

6 661 | 10% [CH4, continuum Imager SPC X

7 883 | 5% |CH4, absorption Imager SPC X

8 | 721 | 5% [CH4 quantification Imager |SPC (& HLC?) X X (HLC)

9 950 | 6% |water detection Imager SPC X
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